Abstract
Direct electrodeposition of indium onto silicon paves the way for advances in microelectronics, photovoltaics, and optoelectronics. Indium is generally electrodeposited onto silicon utilizing a physically or thermally deposited metallic seed layer. Eliminating this layer poses benefits in microelectronics by reducing resistive interfaces and in vapor-liquid-solid conversion to III-V material by allowing direct contact to the single-crystal silicon substrate for epitaxial conversion. We investigated conditions to directly electrodeposit indium onto n-type Si(100). We show that a two-step galvanostatic plating at low temperatures can consistently produce smooth, continuous films of indium over large areas, in bump morphologies, and conformally into inverted pyramids.
Funder
National Renewable Energy Laboratory - Laboratory Directed Research and Development (LDRD) Program
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献