Improved Carbon Corrosion and Platinum Dissolution Durability in Automotive Fuel Cell Startup and Shutdown Operation

Author:

Wang Chunmei,Ricketts Mark,Soleymani Amir PeymanORCID,Jankovic Jasna,Waldecker James,Chen JixinORCID,Xu Chunchuan

Abstract

Three protocols of accelerated startup and shutdown (SU/SD) test were investigated: startup and shutdown with air supply and soak to both anode and cathode (air-SU/SD), hydrogen protected startup and shutdown (H2-SU/SD), and hydrogen protected startup and shutdown with a load (H2-SU/SD with a load). The performance losses, electrochemical surface area (ECSA) reduction, and catalyst layer degradation were characterized and compared for these SU/SD protocols. Air-SU/SD protocol showed much more severe performance loss and catalyst layer degradation than hydrogen protected ones, which confirmed the benefits of hydrogen protection. The temperature effect on air-SU/SD was significant in a broad range from 20 °C to 70 °C, with low temperature greatly reducing the degradation. The mechanism of H2 protection and load drawn in alleviating carbon corrosion was explained based on reactions and charge conservation during SU/SD. This paper provides comprehensive test data and failure analysis to quantify the benefits of H2 protection and load drawn and to facilitate future enhancement of system strategies on SU/SD durability.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3