Evaluation of Semi-Automatic Compositional and Microstructural Analysis of Energy Dispersive Spectroscopy (EDS) Maps via a Python-Based Image and Data Processing Framework for Fuel Cell Applications

Author:

Batool MariahORCID,Godoy Andres O.,Birnbach Martin,Dekel Dario R.ORCID,Jankovic JasnaORCID

Abstract

Computer-aided data acquisition, analysis, and interpretation are rapidly gaining traction in numerous facets of research. One of the subsets of this field, image processing, is most often implemented for post-processing material microstructural characterization data to understand better and predict materials’ features, properties, and behaviors at multiple scales. However, to tackle the ambiguity of multi-component materials analysis, spectral data can be used in combination with image processing. The current study introduces a novel Python-based image and data processing method for in-depth analysis of energy dispersive spectroscopy (EDS) elemental maps to analyze multi-component agglomerate size distribution, the average area of each component, and their overlap. The framework developed in this study is applied to examine the interaction of Cerium Oxide (CeOx) and Palladium (Pd) particles in the membrane electrode assembly (MEA) of an Anion-Exchange Membrane Fuel Cell (AEMFC) and to investigate if this approach can be correlated to cell performance. The study also performs a sensitivity analysis of several parameters and their effect on the computed results. The developed framework is a promising method for semi-automatic data processing and can be further advanced towards a fully automatic analysis of similar data types in the field of clean energy materials and broader.

Funder

Nancy & Stephen Grand Technion Energy Program

U.S. Foreign Fulbright Scholarship Program

National Science Foundation CAREER Award

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3