(Invited) Sequential 3D Integration of Ge Transistors on Si CMOS

Author:

Ostling Mikael,Hellstrom Per-Erik

Abstract

To keep the scaling progress going, we must go three dimensional (3D). This paper outlines some technology challenges and solutions to integrate Ge p-type MOSFETs sequentially on Si CMOS. Such a solution addresses the grand challenge to enable increased device density. However, the device itself does not have to scale but at the same time innovative solutions are suggested for low supply voltage operation enabling energy efficient integrated circuits (ICs) that will not be dominated by energy consumption in interconnects. By stacking the transistors on top of each other, and connecting them with inter-tier via, the density of transistors per unit area increases. This approach demands that transistors are fabricated at a lower temperature than today’s Si CMOS technology. Here, we have focused on Ge based transistors, which have an inherently lower process temperature compared to Si transistors. Several technological and design breakthroughs towards realizing Ge based sequential 3D circuits are discussed.

Publisher

The Electrochemical Society

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3