Author:
Jourdan Nicolas,Carbonell Laureen,Heylen Nancy,Swerts Johan,Armini S.,Caro A. Maestre,Demuynck S.,Croes K.,Beyer G.,Tökei Zsolt,Elshocht S. Van,Vancoille E.
Abstract
The traditional Cu interconnect barrier/seed process consisting of PVD-Ta based barrier/Cu-seed will reach its limit between 20 nm and 30 nm wide trench dimension. To extend Cu interconnect technology further, possible solutions such as PVD-RuTa, PEALD-Ru-based, CVD-Co, PVD/CVD-self-formed-MnSixOy and self-assembled monolayers (SAMs) are studied. It is shown that both PVD-RuTa and CVD-Co possess the so-called seed enhancement capability allowing Cu filling of narrow recesses. However, they exhibit limitations in terms of Cu-diffusion barrier efficiency, electromigration reliability and scalability. Despite, the concept of SAM [NH2-SAM(C3)] as Cu diffusion barrier is demonstrated, it requires maturity and compatibility within the process flow (e.g. adhesion with the Cu overlayer). Finally, it is considered that PEALD-Ru-based alloys and CVD-based MnSixOy films are serious candidates for sub-30 nm wide trench technologies because of their conformal nature and ability to act as an efficient Cu diffusion barrier in the range of 2 nm thickness.
Publisher
The Electrochemical Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献