Author:
Favaretto Rodolfo Migon,Musse Soraia Raupp
Abstract
In this work we proposed a computational model to extract pedestrian characteristics from video sequences. The proposed model considers a series of characteristics of the pedestrians and the crowd, such as number and size of groups, distances, speeds, among others, and performs the mapping of these characteristics in personalities, emotions and cultural aspects, considering the Cultural Dimensions of Hofstede (HCD), the Big-Five Personality Model (OCEAN) and the OCC Emotional Model. The main hypothesis is that there is a relationship between so-called intrinsic human variables (such as emotion) and the way people behave in space and time. As one of the main contributions, four large dimensions of geometric characteristics (Big4GD) were proposed: I - Physical, II - Personal and Emotional, III - Social and IV - Cultural, which seek to describe the behavior of pedestrians and groups in the crowd. The GeoMind tool was developed for the purpose of detecting the four geometric dimensions from video sequences. In addition, several analyzes were carried out with the purpose of validating the proposed model, from comparing results with the literature, including the comparison of spontaneous multitudes from several countries and controlled experiments involving Fundamental Diagrams.
Publisher
Sociedade Brasileira de Computação - SBC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献