Author:
Santana Everton,Mastelini Saulo,Jr. Sylvio
Abstract
Purchasing air tickets by the lowest price is a challenging task for consumers since the prices might fluctuate over time influenced by several factors. In order to support users’ decision, some price prediction techniques have been developed. Considering that this problem could be solved by multi-target approaches from Machine Learning, this work proposes a novel method looking forward to obtaining an improvement in air ticket prices prediction. The method, called Deep Regressor Stacking (DRS), applies a naive deep learning methodology to reach more accurate predictions. To evaluate the contribution of the DRS, it was compared with the competence of the single-target regression and two state-of-the-art multi-target regressions (Stacked Single Target and Ensemble of Regressor Chains). All four approaches were performed based on Random Forest and Support Vector Machine algorithms over two real-life airfares datasets. After results, it was concluded DRS outperformed the other three methods, being the most indicated (most predictive) to assist air passengers in the prediction of flight ticket price.
Publisher
Sociedade Brasileira de Computação
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献