A multi-objective stacked regression method for distance based colour measuring device

Author:

Brar Amrinder Singh,Singh Kawaljeet

Abstract

AbstractIdentifying colour from a distance is challenging due to the external noise associated with the measurement process. The present study focuses on developing a colour measuring system and a novel Multi-target Regression (MTR) model for accurate colour measurement from distance. Herein, a novel MTR method, referred as Multi-Objective Stacked Regression (MOSR) is proposed. The core idea behind MOSR is based on stacking as an ensemble approach with multi-objective evolutionary learning using NSGA-II. A multi-objective optimization approach is used for selecting base learners that maximises prediction accuracy while minimising ensemble complexity, which is further compared with six state-of-the-art methods over the colour dataset. Classification and regression tree (CART), Random Forest (RF) and Support Vector Machine (SVM) were used as regressor algorithms. MOSR outperformed all compared methods with the highest coefficient of determination values for all three targets of the colour dataset. Rigorous comparison with state-of-the-art methods over 18 benchmarked datasets showed MOSR outperformed in 15 datasets when CART was used as a regressor algorithm and 11 datasets when RF and SVM were used as regressor algorithms. The MOSR method was statistically superior to compared methods and can be effectively used to measure accurate colour values in the distance-based colour measuring device.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3