Fake news detection: a systematic literature review of machine learning algorithms and datasets

Author:

Villela Humberto FernandesORCID,Corrêa FábioORCID,Ribeiro Jurema Suely de Araújo NeryORCID,Rabelo AirORCID,Carvalho Dárlinton Barbosa FeresORCID

Abstract

Fake news (i.e., false news created to have a high capacity for dissemination and malicious intentions) is a problem of great interest to society today since it has achieved unprecedented political, economic, and social impacts. Taking advantage of modern digital communication and information technologies, they are widely propagated through social media, being their use intentional and challenging to identify. In order to mitigate the damage caused by fake news, researchers have been seeking the development of automated mechanisms to detect them, such as algorithms based on machine learning as well as the datasets employed in this development. This research aims to analyze the machine learning algorithms and datasets used in training to identify fake news published in the literature. It is exploratory research with a qualitative approach, which uses a research protocol to identify studies with the intention of analyzing them. As a result, we have the algorithms Stacking Method, Bidirectional Recurrent Neural Network (BiRNN), and Convolutional Neural Network (CNN), with 99.9%, 99.8%, and 99.8% accuracy, respectively. Although this accuracy is expressive, most of the research employed datasets in controlled environments (e.g., Kaggle) or without information updated in real-time (from social networks). Still, only a few studies have been applied in social network environments, where the most significant dissemination of disinformation occurs nowadays. Kaggle was the platform identified with the most frequently used datasets, being succeeded by Weibo, FNC-1, COVID-19 Fake News, and Twitter. For future research, studies should be carried out in addition to news about politics, the area that was the primary motivator for the growth of research from 2017, and the use of hybrid methods for identifying fake news.

Publisher

Sociedade Brasileira de Computacao - SB

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3