Fake news detection using knowledge graph and graph convolutional network

Author:

Nguyen Vy Duong Kim1,Do Phuc1

Affiliation:

1. University of Information Technology, Vietnam National University, Ho Chi Minh City, Vietnam

Abstract

People will increasingly get expedited and diverse means of accessing news as societies progress. Furthermore, there is a noticeable increase in the prevalence of incorrect and misleading information. Our research is motivated by the significant concerns regarding the detrimental impacts of disinformation on the general public, political stability, and trust in the media. The scarcity of Vietnamese-language datasets can be attributed to the predominant focus of false news detection studies on datasets only in English. Detection investigations of fake news have predominantly relied on supervised machine learning algorithms, which possess notable limitations when confronted with unclassified news articles that are either authentic or untrue. The utilization of Knowledge Graphs (KG) and Graph Convolutional Networks (GCN) holds promise in addressing the constraints of supervised machine learning algorithms. To address these problems, we propose an approach that integrates KG)into the procedure for detecting fake news. We utilize the Vietnamese Fake News Detection dataset (VFND-vietnamese-fake-news), comprising authentic and deceptive news articles from reputable Vietnamese newspapers such as vnexpress, tuoitre, and have been collected from 2018 to 2023. News articles are only labeled as real or fake after experiencing independent verification. The Glove embedding (Global Vectors for Word Representation) is employed to establish a knowledge network for the given dataset. This knowledge graph’s construction is accomplished using the Word Mover’s Distance (WMD) algorithm in conjunction with the K-nearest neighbor approach; GCN approach and the input KG train models to discern between real and fake news. With labeling half of the input dataset, the experimental findings indicate a notable level of accuracy, reaching up to 85%. Our research holds significant importance in identifying fake news, particularly within the context of the Vietnamese language.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3