SPEECH RECOGNITION OF KV-PATTERNED INDONESIAN SYLLABLE USING MFCC, WAVELET AND HMM

Author:

Hidayat Syahroni

Abstract

The Indonesian language is an agglutinative language which has complex suffixes and affixes attached on its root. For this reason there is a high possibility to recognize Indonesian speech based on its syllables. The syllable-based Indonesian speech recognition could reduce the database and recognize new Indonesian vocabularies which evolve as the result of language development. MFCC and WPT daubechies 3rd (DB3) and 7th (DB7) order methods are used in feature extraction process and HMM with Euclidean distance probability is applied for classification. The results shows that the best recognition rateis 75% and 70.8% for MFCC and WPT method respectively, which come from the testing using training data test. Meanwhile, for testing using external data test WPT method excel the MFCC method, where the best recognition rate is 53.1% for WPT and 47% for MFCC. For MFCC the accuracy increased asthe data length and the frame length increased. In WPT, the increase in accuracy is influenced by the length of data, type of the wavelet and decomposition level. It is also found that as the variation of state increased the recognition for both methods decreased.

Publisher

University of Trunojoyo Madura

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3