WAVELET DETAIL COEFFICIENT AS A NOVEL WAVELET-MFCC FEATURES IN TEXT-DEPENDENT SPEAKER RECOGNITION SYSTEM

Author:

Hidayat SyahroniORCID,Muhammad Tajuddin ,Siti Agrippina Alodia Yusuf ,Jihadil Qudsi ,Jaya Nenet Natasudian

Abstract

Speaker recognition is the process of recognizing a speaker from his speech. This can be used in many aspects of life, such as taking access remotely to a personal device, securing access to voice control, and doing a forensic investigation. In speaker recognition, extracting features from the speech is the most critical process. The features are used to represent the speech as unique features to distinguish speech samples from one another. In this research, we proposed the use of a combination of Wavelet and Mel Frequency Cepstral Coefficient (MFCC), Wavelet-MFCC, as feature extraction methods, and Hidden Markov Model (HMM) as classification. The speech signal is first extracted using Wavelet into one level of decomposition, then only the sub-band detail coefficient is used as the feature for further extraction using MFCC. The modeled system was applied in 300 speech datasets of 30 speakers uttering “HADIR” in the Indonesian language. K-fold cross-validation is implemented with five folds. As much as 80% of the data were trained for each fold, while the rest was used as testing data. Based on the testing, the system's accuracy using the combination of Wavelet-MFCC obtained is 96.67%. ABSTRAK: Pengecaman penutur adalah proses mengenali penutur dari ucapannya yang dapat digunakan dalam banyak aspek kehidupan, seperti mengambil akses dari jauh ke peranti peribadi, mendapat kawalan ke atas akses suara, dan melakukan penyelidikan forensik. Ciri-ciri khas dari ucapan merupakan proses paling kritikal dalam pengecaman penutur. Ciri-ciri ini digunakan bagi mengenali ciri unik yang terdapat pada sesebuah ucapan dalam membezakan satu sama lain. Penyelidikan ini mencadangkan penggunaan kombinasi Wavelet dan Mel Frekuensi Pekali Cepstral (MFCC), Wavelet-MFCC, sebagai kaedah ekstrak ciri-ciri penutur, dan Model Markov Tersembunyi (HMM) sebagai pengelasan. Isyarat penuturan pada awalnya diekstrak menggunakan Wavelet menjadi satu tahap penguraian, kemudian hanya pekali perincian sub-jalur digunakan bagi pengekstrakan ciri-ciri berikutnya menggunakan MFCC. Model ini diterapkan kepada 300 kumpulan data ucapan daripada 30 penutur yang mengucapkan kata "HADIR" dalam bahasa Indonesia. Pengesahan silang K-lipat dilaksanakan dengan 5 lipatan. Sebanyak 80% data telah dilatih bagi setiap lipatan, sementara selebihnya digunakan sebagai data ujian. Berdasarkan ujian ini, ketepatan sistem yang menggunakan kombinasi Wavelet-MFCC memperolehi 96.67%.

Publisher

IIUM Press

Subject

Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science

Reference34 articles.

1. Tirumala SS, Shahamiri SR, Garhwal AS, Wang R. (2017) Speaker identification features extraction methods: A systematic review. Expert Systems with Applications, 90:250-271. doi:10.1016/j.eswa.2017.08.015

2. Alsulaiman M, Mahmood A, Muhammad G. (2017) Speaker recognition based on Arabic phonemes. Speech Communication, 86:42-51. doi:10.1016/j.specom.2016.11.004

3. Shaver, Clark D. and Acken, John M. (2016) A Brief Review of Speaker Recognition Technology. Electrical and Computer Engineering Faculty Publications and Presentations. 350. http://pdxscholar.library.pdx.edu/ece_fac/350

4. Wei, Y. (2020). Adaptive Speaker Recognition Based on Hidden Markov Model Parameter Optimization. IEEE Access, 8: 34942-34948. doi:10.1109/ACCESS.2020.2972511

5. Huang, Xuedong and Acero, Alex, Hon H-W. (2001) Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. Upper Saddle River, NJ, United States.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3