4DPRR- Index for predicting mortality in COVID-19 ARDS

Author:

Paul Gunchan,Krishna M. Ravi,Gautam PL

Abstract

Abstract Background Mortality in ARDS was reduced significantly after the introduction of the low tidal volume ventilation strategy. It has been recently shown that lung-protective ventilation strategies should primarily target driving pressure rather than Vt and that ventilator induced lung injury is not just dependent on tidal volume but also other factors like respiratory rate and driving pressure. Ventilator induced lung injury is also thought to be dependent on the amount of energy transferred by the ventilator to the patient which in turn is dependent on tidal volume size (VT), plateau pressure (Pplat), respiratory rate (RR). Mechanical power can be calculated accurately through power equations which can increase their applicability in clinical practice. One simple composite equation (driving pressure multiplied by four plus respiratory rate [4DPRR]) has been recently suggested as a simple surrogate for the power equation. This equation also doesn’t include PEEP as it has been theorized that it is the only elastic dynamic component of driving energy which affects the outcome and not the elastic static component (i.e., PEEP) and the resistive power (related to flow and airway resistance). Objectives To assess the mechanical power as measured by 4DPRR in mechanically ventilated patients who have moderate to severe COVID-19 ARDS. Methods: We obtained data on ventilatory variables and mechanical power from the patients who were admitted with moderate to severe COVID ARDS in our hospital from March 2021 to June 2021. Results We included 34 patients (28% women; mean age, 57 ± 17 yrs.). The average ΔP was 21.44 ± 3.98 cmH2O, the RR was 23.8 ± 3.84 breaths/min, and the mean driving pressure was 21.4 cmH2O. 28% (n = 10) of patients expired. There was no significant association of 4DPRR (P 0.72), Pplat (P 0.79).and RR (P 0.21) with mortality as predicted by area under ROC curves. Conclusions Driving power and plateau pressure were associated with mortality during controlled mechanical ventilation in COVID ARDS, but a simpler model of mechanical power using only the driving pressure and respiratory rate was found to be a poor predictor of mortality. Keywords: COVID-19, ARDS, Mechanical power, Driving pressure, Plateau pressure

Publisher

Journal of Mechanical Ventilation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3