Affiliation:
1. Kazan State Power Engineering University
2. Stek Master, LLC
Abstract
The parameters of electromechanical converters functioning as part of working sets can change as a result of the influence externa factors, such as changes in the characteristics of the environment. Changes in parameters also occur due to parametric disturbances caused by changes in the physical characteristics of the elements electromechanical converters. In this regard, the development of methods and algorithms that provide analysis and control of the functioning electromechanical converters is an urgent task. The article discusses a digital algorithm for monitoring the functioning of an electromechanical DC converter, based on obtaining characteristics in a tabular-graphic form. These characteristics reflect the relationship between the vector of unstable parameters of the research object χ and the generalized integral criterion Q as a function of the discrepancy between the output coordinates of the electromechanical converter and its reference model. Discrete transfer functions of the reference model and sensitivity models are obtained for the monitored unstable parameters of the electromechanical converter. Based on the decomposition of discrete models, the corresponding direct programming schemes in the Frobenius form are constructed. The digital algorithms of the obtained models are represented by the difference equations of state and output. The structural scheme calculation of the generalized integral criterion Q and point dependencies χ (Q) is given. Discrete approximation was carried out using a bilinear transformation (Tustin's formula). A computer experiment for obtaining point χ-dependencies was carried out with varying degrees of accuracy, depending on the step of variations monitored parameters of the electromechanical converter within a given range of variation. The results obtained make it possible to assess the monitored unstable parameters of electromechanical DC converters with the required accuracy.
Publisher
Kazan State Power Engineering University
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献