Synthesis of a parametrically invariant servo drive using the model parameters recovery method

Author:

Malev N. A.1ORCID

Affiliation:

1. Kazan State Power Engineering University

Abstract

   RELEVANCE. Servo drives operate with a law of change of the setting action unknown in advance and provide reproduction of this law by the output coordinate. Servo drives find application in robotic and mechatronic systems, machine tools, systems of automatic control and remote transmission of information, radar stations, guidance units, etc. The operation of servodrives often proceeds in conditions of instability parameters and characteristics elements of the electric drive. Corrective devices synthesized by classical methods of automatic control theory cannot cope with providing the specified accuracy of reproduction of the input signal and the required quality of transients.   THE PURPOSE. In this regard, an important and urgent task is the synthesis of an active correction system with a non-stationary controller that provides the required quality and accuracy of the control process due to the coefficient self-tuning algorithm.   METHODS. When solving this problem, methods for identifying parameters based on the gradient algorithm and numerical integration of the object of study dynamics equations, implemented by means of the MatLab software environment, were used.   RESULTS. The paper solves the problem of synthesizing the self-tuning algorithm for the coefficients of the servo drive corrective device based on the identification approach. The parameters are identified by a searchless gradient algorithm while minimizing the discrepancy between the object of study and its inverse model, as well as restoring the coefficients of differential equations using integration and the corresponding computational procedures. An servo drive with negative position feedback is tuned to the modular optimum with a proportional controller whose coefficients are completely determined by the parameters to be identified. The self-tuning algorithm consists in calculating the correction factor of the non-stationary P-controller and forming a multiplicative channel of the active correction closed loop.   CONCLUSION. The simulation of the electric drive in the MatLab software environment showed high accuracy and quickness of the process identifying parameters in a wide range of their change. When forming an active correction contour, a necessary requirement is to distinguish between the identification cycle and the self-tuning cycle. This makes it possible to avoid singular perturbations and reduce resonant facts during the operation of a parametrically invariant electric drive. The developed method of active correction with a priori known and unchanged structure of the object model of study makes it possible to maintain the required accuracy and quality of the operation of the electric drive under conditions of parametric disturbances with permissible deviations of accuracy and quality indicators. Implementation of the method does not require additional equipment, organization of special test signals, significant computational costs. The method of synthesizing a parametrically invariant electric drive can be used to develop robust control systems for non-stationary objects, including when the hypothesis of quasi-stationarity is not fulfilled.

Publisher

Kazan State Power Engineering University

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3