Distinct Distances in Graph Drawings

Author:

Carmi Paz,Dujmović Vida,Morin Pat,Wood David R.

Abstract

The distance-number of a graph $G$ is the minimum number of distinct edge-lengths over all straight-line drawings of $G$ in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no $K^-_4$-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that $n$-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in ${\cal O}(\log n)$. To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth $2$ and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree $5$ and arbitrarily large distance-number. Moreover, as $\Delta$ increases the existential lower bound on the distance-number of $\Delta$-regular graphs tends to $\Omega(n^{0.864138})$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tree-Partitions with Bounded Degree Trees;MATRIX Book Series;2024

2. Product structure of graph classes with bounded treewidth;Combinatorics, Probability and Computing;2023-12-07

3. Testing the planar straight-line realizability of 2-trees with prescribed edge lengths;European Journal of Combinatorics;2023-09

4. Degenerate drawing of outerplanar graphs with two edge lengths;Discrete Applied Mathematics;2021-10

5. PROXIMITY DRAWINGS OF HIGH-DEGREE TREES;International Journal of Computational Geometry & Applications;2013-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3