Abstract
Abstract
We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the underlying treewidth of a graph class
$\mathcal{G}$
to be the minimum non-negative integer
$c$
such that, for some function
$f$
, for every graph
$G \in \mathcal{G}$
there is a graph
$H$
with
$\textrm{tw}(H) \leqslant c$
such that
$G$
is isomorphic to a subgraph of
$H \boxtimes K_{f(\textrm{tw}(G))}$
. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth
$3$
; the class of
$K_{s,t}$
-minor-free graphs has underlying treewidth
$s$
(for
$t \geqslant \max \{s,3\}$
); and the class of
$K_t$
-minor-free graphs has underlying treewidth
$t-2$
. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no
$H$
subgraph has bounded underlying treewidth if and only if every component of
$H$
is a subdivided star, and that the class of graphs with no induced
$H$
subgraph has bounded underlying treewidth if and only if every component of
$H$
is a star.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Reference81 articles.
1. Planar graphs have bounded nonrepetitive chromatic number;Dujmović;Adv. Comb.,2020
2. Notes on nonrepetitive graph colouring;Barát;Electron. J. Comb.,2008
3. On
$K_{s,t}$
-minors in graphs with given average degree, II;Discrete Math.,2012
4. Graph drawings with few slopes;Dujmović;Comput. Geom. Theory Appl.,2007
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献