Author:
Houdré Christian,Restrepo Ricardo
Abstract
Let $LA_{n}(\tau)$ be the length of the longest alternating subsequence of a uniform random permutation $\tau\in\left[ n\right] $. Classical probabilistic arguments are used to rederive the asymptotic mean, variance and limiting law of $LA_{n}\left( \tau\right) $. Our methodology is robust enough to tackle similar problems for finite alphabet random words or even Markovian sequences in which case our results are mainly original. A sketch of how some cases of pattern restricted permutations can also be tackled with probabilistic methods is finally presented.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献