Abstract
Abstract
The goal of this paper is to go further in the analysis of the behavior of the number of descents in a random permutation. Via two different approaches relying on a suitable martingale decomposition or on the Irwin–Hall distribution, we prove that the number of descents satisfies a sharp large-deviation principle. A very precise concentration inequality involving the rate function in the large-deviation principle is also provided.
Publisher
Cambridge University Press (CUP)