On the Location of Chromatic Zeros of Series-Parallel Graphs
-
Published:2023-07-14
Issue:3
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bencs Ferenc,Huijben Jeroen,Regts Guus
Abstract
In this paper we consider the zeros of the chromatic polynomial of series-parallel graphs. Complementing a result of Sokal, giving density outside the disk $|q-1|\leq1$, we show density of these zeros in the half plane $\Re(q)>3/2$ and we show there exists an open region $U$ containing the interval $(0,32/27)$ such that $U\setminus\{1\}$ does not contain zeros of the chromatic polynomial of series-parallel graphs.
We also disprove a conjecture of Sokal by showing that for each large enough integer $\Delta$ there exists a series-parallel graph for which all vertices but one have degree at most $\Delta$ and whose chromatic polynomial has a zero with real part exceeding $\Delta$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献