Author:
Bencs Ferenc,Huijben Jeroen,Regts Guus
Abstract
AbstractWe show that for any non-real algebraic number q, such that
$$|q-1|>1$$
|
q
-
1
|
>
1
or $$\Re(q)>\frac{3}{2}$$
ℜ
(
q
)
>
3
2
it is #P-hard to compute
a multiplicative (resp. additive) approximation to the absolute
value (resp. argument) of the chromatic polynomial evaluated at q on planar graphs. This implies #P-hardness for all
non-real algebraic q on the family of all graphs. We, moreover,
prove several hardness results for q, such that $$|q-1|\leq 1$$
|
q
-
1
|
≤
1
.Our hardness results are obtained by showing that a polynomial time
algorithm for approximately computing the chromatic
polynomial of a planar graph at non-real algebraic q (satisfying
some properties) leads to a polynomial time algorithm for
exactly computing it, which is known to be hard by a result
of Vertigan. Many of our results extend in fact to the more general
partition function of the random cluster model, a well-known
reparametrization of the Tutte polynomial.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Alexander Barvinok (2016). Combinatorics and complexity of partition functions, volume 30 of Algorithms and Combinatorics. Springer, Cham. ISBN 978-3-319-51828-2; 978-3-319-51829-9, vi+303 . URL
https://doi-org.proxy.uba.uva.nl/10.1007/978-3-319-51829-9.
2. Ferenc Bencs, Jeroen Huijben & Guus Regts (2023). On the location of chromatic zeros of series-parallel graphs. Electron. J. Combin. 30(3), Paper No. 3.2, 22. ISSN 1077-8926. URL https://doi.org/10.37236/11204.
3. Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg & Daniel Štefankovič (2020). Inapproximability of the independent set polynomial in the complex plane. SIAM J. Comput. 49(5), STOC18–395–STOC18–448. ISSN 0097-5397. URL https://doi-org.proxy.uba.uva.nl/10.1137/18M1184485.
4. G. D. Birkhoff & D. C. Lewis (1946). Chromatic polynomials. Trans. Amer. Math. Soc. 60, 355–451. ISSN 0002-9947,1088-6850. URL https://doi.org/10.2307/1990348.
5. David de Boer, Pjotr Buys, Lorenzo Guerini, Han Peters & Guus Regts (2021). Zeros, chaotic ratios and the computational complexity arXiv preprint of approximating the independence polynomial. arXiv preprint arXiv:2104.11615.