Extremal Graphs for a Spectral Inequality on Edge-Disjoint Spanning Trees
-
Published:2022-06-17
Issue:2
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Cioabă Sebastian M.,Ostuni Anthony,Park Davin,Potluri Sriya,Wakhare Tanay,Wong Wiseley
Abstract
Liu, Hong, Gu, and Lai proved if the second largest eigenvalue of the adjacency matrix of graph $G$ with minimum degree $\delta \ge 2m+2 \ge 4$ satisfies $\lambda_2(G) < \delta - \frac{2m+1}{\delta+1}$, then $G$ contains at least $m+1$ edge-disjoint spanning trees, which verified a generalization of a conjecture by Cioabă and Wong. We show this bound is essentially the best possible by constructing $d$-regular graphs $\mathcal{G}_{m,d}$ for all $d \ge 2m+2 \ge 4$ with at most $m$ edge-disjoint spanning trees and $\lambda_2(\mathcal{G}_{m,d}) < d-\frac{2m+1}{d+3}$. As a corollary, we show that a spectral inequality on graph rigidity by Cioabă, Dewar, and Gu is essentially tight.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献