Graph Rigidity Properties of Ramanujan Graphs
-
Published:2023-07-28
Issue:3
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Cioabă Sebastian,Dewar Sean,Grasegger Georg,Gu Xiaofeng
Abstract
A recent result of Cioabă, Dewar and Gu implies that any $k$-regular Ramanujan graph with $k \geq 8$ is globally rigid in $\mathbb{R}^2$. In this paper, we extend these results and prove that any $k$-regular Ramanujan graph of sufficiently large order is globally rigid in $\mathbb{R}^2$ when $k\in \{6, 7\}$, and when $k\in \{4,5\}$ if it is also vertex-transitive. These results imply that the Ramanujan graphs constructed by Morgenstern in 1994 are globally rigid. We also prove several results on other types of framework rigidity, including body-bar rigidity, body-hinge rigidity, and rigidity on surfaces of revolution. In addition, we use computational methods to determine which Ramanujan graphs of small order are globally rigid in $\mathbb{R}^2$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Uniquely Realisable Graphs in Analytic Normed Planes;International Mathematics Research Notices;2024-07-22