On the Largest Component of a Hyperbolic Model of Complex Networks

Author:

Bode Michel,Fountoulakis Nikolaos,Müller Tobias

Abstract

We consider a model for complex networks that was introduced by Krioukov et al.  In this model, $N$ points are chosen randomly inside a disk on the hyperbolic plane and any two of them are joined by an  edge if they are within a certain hyperbolic distance.  The $N$ points are distributed according to a quasi-uniform distribution, which is a distorted version of  the uniform distribution. The model turns out to behave similarly to the well-known Chung-Lu model, but without the independence between the edges. Namely, it exhibits a power-law degree sequence and small distances but, unlike the Chung-Lu model and many other well-known models for complex networks, it also exhibits clustering. The model is controlled by two parameters $\alpha$ and $\nu$ where, roughly speaking, $\alpha$ controls the exponent of the power-law and $\nu$ controls the average degree. The present paper focuses on the evolution of the component structure of the random graph.  We show that (a) for $\alpha > 1$ and $\nu$ arbitrary, with high probability, as the number of vertices grows, the largest component of the random graph has sublinear order; (b) for $\alpha < 1$ and $\nu$ arbitrary with high probability there is a "giant" component  of linear order,  and (c) when $\alpha=1$ then there is a non-trivial phase transition for the existence of a linear-sized component in terms of $\nu$. A corrigendum was added to this paper 29 Dec 2018.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3