Publisher
Springer Nature Switzerland
Reference33 articles.
1. Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one-dimensional $$1/|x- y|^2$$ percolation models. Comm. Math. Phys. 107(4), 611–647 (1986). http://projecteuclid.org/euclid.cmp/1104116233
2. Bode, M., Fountoulakis, N., Müller, T.: On the largest component of a hyperbolic model of complex networks. Electron. J. Combin. 22(3), Paper 3.24, 46 (2015). https://doi.org/10.37236/4958
3. Bringmann, K., Keusch, R., Lengler, J.: Sampling geometric inhomogeneous random graphs in linear time. In: 25th European Symposium on Algorithms, LIPIcs. Leibniz International Proceedings in Informatics, vol. 87, pp. Art. No. 20, 15. Schloss Dagstuhl. Leibniz-Zent. Inform. Wadern (2017)
4. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs. Theoret. Comput. Sci. 760, 35–54 (2019). https://doi.org/10.1016/j.tcs.2018.08.014
5. Chung, F., Lu, L.: Complex graphs and networks, CBMS Regional Conference Series in Mathematics, vol. 107. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). https://doi.org/10.1090/cbms/107