Mr. Paint and Mrs. Correct

Author:

Schauz Uwe

Abstract

We introduce a coloring game on graphs, in which each vertex $v$ of a graph $G$ owns a stack of $\ell_v{-}1$ erasers. In each round of this game the first player Mr. Paint takes an unused color, and colors some of the uncolored vertices. He might color adjacent vertices with this color – something which is considered "incorrect". However, Mrs. Correct is positioned next to him, and corrects his incorrect coloring, i.e., she uses up some of the erasers – while stocks (stacks) last – to partially undo his assignment of the new color. If she has a winning strategy, i.e., she is able to enforce a correct and complete final graph coloring, then we say that $G$ is $\ell$-paintable. Our game provides an adequate game-theoretic approach to list coloring problems. The new concept is actually more general than the common setting with lists of available colors. It could have applications in time scheduling, when the available time slots are not known in advance. We give an example that shows that the two notions are not equivalent; $\ell$-paintability is stronger than $\ell$-list colorability. Nevertheless, many deep theorems about list colorability remain true in the context of paintability. We demonstrate this fact by proving strengthened versions of classical list coloring theorems. Among the obtained extensions are paintability versions of Thomassen's, Galvin's and Shannon's Theorems.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Slow coloring of 3k-connected graphs;Discrete Applied Mathematics;2024-03

2. Paintability of complete bipartite graphs;Discrete Applied Mathematics;2024-03

3. The Alon–Tarsi number of planar graphs revisited;Journal of Graph Theory;2023-10-13

4. Bichromatic coloring game on triangulations;RAIRO - Operations Research;2023-09

5. Graph polynomials and paintability of plane graphs;Discrete Applied Mathematics;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3