Author:
Egge E. S.,Haglund J.,Killpatrick K.,Kremer D.
Abstract
Garsia and Haiman (J. Algebraic. Combin. $\bf5$ $(1996)$, $191-244$) conjectured that a certain sum $C_n(q,t)$ of rational functions in $q,t$ reduces to a polynomial in $q,t$ with nonnegative integral coefficients. Haglund later discovered (Adv. Math., in press), and with Garsia proved (Proc. Nat. Acad. Sci. ${\bf98}$ $(2001)$, $4313-4316$) the refined conjecture $C_n(q,t) = \sum q^{{\rm area}}t^{{\rm bounce}}$. Here the sum is over all Catalan lattice paths and ${\rm area}$ and ${\rm bounce}$ have simple descriptions in terms of the path. In this article we give an extension of $({\rm area},{\rm bounce})$ to Schröder lattice paths, and introduce polynomials defined by summing $q^{{\rm area}}t^{{\rm bounce}}$ over certain sets of Schröder paths. We derive recurrences and special values for these polynomials, and conjecture they are symmetric in $q,t$. We also describe a much stronger conjecture involving rational functions in $q,t$ and the $\nabla$ operator from the theory of Macdonald symmetric functions.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献