Decorated Dyck Paths, Polyominoes, and the Delta Conjecture

Author:

D’Adderio Michele,Iraci Alessandro,Vanden Wyngaerd Anna

Abstract

We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund (“A proof of the q , t q,t -Schröder conjecture”, 2004) and Aval et al. (“Statistics on parallelogram polyominoes and a q , t q,t -analogue of the Narayana numbers”, 2014). This settles in particular the cases , e n d h d \langle \cdot ,e_{n-d}h_d\rangle and , h n d h d \langle \cdot ,h_{n-d}h_d\rangle of the Delta conjecture of Haglund, Remmel and Wilson (“The delta conjecture”, 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in “A proof of the q , t q,t -Schröder conjecture” (2004).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. Cambridge Mathematical Library;Andrews, George E.,1998

2. Combinatorics of labelled parallelogram polyominoes;Aval, J.-C.;J. Combin. Theory Ser. A,2015

3. Statistics on parallelogram polyominoes and a 𝑞,𝑡-analogue of the Narayana numbers;Aval, Jean-Christophe;J. Combin. Theory Ser. A,2014

4. Science fiction and Macdonald’s polynomials;Bergeron, F.,1999

5. Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions;Bergeron, F.;Methods Appl. Anal.,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorics of the Delta conjecture at q=-1;Algebraic Combinatorics;2024-02-22

2. Some Consequences of the Valley Delta Conjectures;Annals of Combinatorics;2023-09-11

3. New identities for theta operators;Transactions of the American Mathematical Society;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3