Abstract
We give a method to construct cospectral graphs for the normalized Laplacian by a local modification in some graphs with special structure. Namely, under some simple assumptions, we can replace a small bipartite graph with a cospectral mate without changing the spectrum of the entire graph. We also consider a related result for swapping out biregular bipartite graphs for the matrix $A+tD$. We produce (exponentially) large families of non-bipartite, non-regular graphs which are mutually cospectral, and also give an example of a graph which is cospectral with its complement but is not self-complementary.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献