Heat Kernel of Networks with Long-Range Interactions

Author:

Kalala Mutombo Franck12ORCID,Nanyanzi Alice23,Utete Simukai W.2

Affiliation:

1. Department of Mathematics and Computer Sciences, University of Lubumbashi, Route Kasapa 1825, Democratic Republic of the Congo

2. African Institute for Mathematical Sciences, AIMS-South Africa, 5-6 Melrose Road, Muizenberg 7945, South Africa

3. Stellenbosch University, Stellenbosch 7600, South Africa

Abstract

The heat kernel associated with a discrete graph Laplacian is the basic solution to the heat diffusion equation of a strict graph or network. In addition, this kernel represents the heat transfer that occurs over time across the network edges. Its computation involves exponentiating the Laplacian eigensystem with respect to time. In this paper, we expand upon this concept by considering a novel network-theoretic approach developed in recent years, which involves defining the k-path Laplacian operator for networks. Prior studies have adopted the notion of integrating long-range interactions (LRI) in the transmission of “information” across the nodes and edges of the network. Various methods have been employed to consider long-range interactions. We explore here the incorporation of long-range interactions in network analysis through the use of Mellin and Laplace transforms applied to the k-path Laplacian matrix. The contribution of this paper is the computation of the heat kernel associated with the k-path Laplacian, called the generalized heat kernel (GHK), and its employment as the basis for extracting stable and useful novel versions of invariants for graph characterization. The results presented in this paper demonstrate that the use of LRI improves the results obtained with classical diffusion methods for networks characterization.

Funder

Robert Bosch Stiftung

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3