On the Zeros of Plane Partition Polynomials
-
Published:2012-01-02
Issue:2
Volume:18
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Boyer Robert P.,Parry Daniel T.
Abstract
Let $PL(n)$ be the number of all plane partitions of $n$ while $pp_k(n)$ be the number of plane partitions of $n$ whose trace is exactly $k$. We study the zeros of polynomial versions $Q_n(x)$ of plane partitions where $Q_n(x) = \sum pp_k(n) x^k$. Based on the asymptotics we have developed for $Q_n(x)$ and computational evidence, we determine the limiting behavior of the zeros of $Q_n(x)$ as $n\to\infty$. The distribution of the zeros has a two-scale behavior which has order $n^{2/3}$ inside the unit disk while has order $n$ on the unit circle.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献