Author:
Bridges Walter,Brindle Benjamin,Bringmann Kathrin,Franke Johann
Abstract
AbstractRecently, Debruyne and Tenenbaum proved asymptotic formulas for the number of partitions with parts in $$\Lambda \subset {\mathbb {N}}$$
Λ
⊂
N
($$\gcd (\Lambda )=1$$
gcd
(
Λ
)
=
1
) and good analytic properties of the corresponding zeta function, generalizing work of Meinardus. In this paper, we extend their work to prove asymptotic formulas if $$\Lambda $$
Λ
is a multiset of integers and the zeta function has multiple poles. In particular, our results imply an asymptotic formula for the number of irreducible representations of degree n of $${\mathfrak {so}{(5)}}$$
so
(
5
)
. We also study the Witten zeta function $$\zeta _{{\mathfrak {so}{(5)}}}$$
ζ
so
(
5
)
, which is of independent interest.
Funder
SFB/TRR
European Research Council
Alfried Krupp von Bohlen und Halbach-Stiftung
Universität zu Köln
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (2000)
2. Apostol, T.: Introduction to Analytic Number Theory. Springer, USA (1976)
3. Boyer, R., Goh, W.: Partition Polynomials: Asymptotics and Zeros. arXiv:0711.1373
4. Boyer, R., Parry, D.: On the zeros of plane partition polynomials. Electron. J. Combin. 18, 25 (2012)
5. Bridges, W., Franke, J., Garnowski, T.: Asymptotics for the twisted eta-product and applications to sign changes in partitions. Res. Math. Sci. 9, 25 (2022)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献