Author:
Abreu Marién,Gauci John Baptist,Labbate Domenico,Mazzuoccolo Giuseppe,Zerafa Jean Paul
Abstract
A graph admitting a perfect matching has the Perfect–Matching–Hamiltonian property (for short the PMH–property) if each of its perfect matchings can be extended to a hamiltonian cycle. In this paper we establish some sufficient conditions for a graph $G$ in order to guarantee that its line graph $L(G)$ has the PMH–property. In particular, we prove that this happens when $G$ is (i) a Hamiltonian graph with maximum degree at most 3, (ii) a complete graph, (iii) a balanced complete bipartite graph with at least 100 vertices, or (iv) an arbitrarily traceable graph. Further related questions and open problems are proposed along the paper.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献