Betwixt and Between 2-Factor Hamiltonian and Perfect-Matching-Hamiltonian Graphs

Author:

Romaniello Federico,Zerafa Jean Paul

Abstract

A Hamiltonian graph is 2-factor Hamiltonian (2FH) if each of its 2-factors is a Hamiltonian cycle. A similar, but weaker, property is the Perfect-Matching-Hamiltonian property (PMH-property): a graph admitting a perfect matching is said to have this property if each one of its perfect matchings (1-factors) can be extended to a Hamiltonian cycle. It was shown that the star product operation between two bipartite 2FH-graphs is necessary and sufficient for a bipartite graph admitting a 3-edge-cut to be 2FH. The same cannot be said when dealing with the PMH-property, and in this work we discuss how one can use star products to obtain graphs (which are not necessarily bipartite, regular and 2FH) admitting the PMH-property with the help of malleable vertices, which we introduce here. We show that the presence of a malleable vertex in a graph implies that the graph has the PMH-property, but does not necessarily imply that it is 2FH. It was also conjectured that if a graph is a bipartite cubic 2FH-graph, then it can only be obtained from the complete bipartite graph $K_{3,3}$ and the Heawood graph by using star products. Here, we show that a cubic graph (not necessarily bipartite) is 2FH if and only if all of its vertices are malleable. We also prove that the above conjecture is equivalent to saying that, apart from the Heawood graph, every bipartite cyclically 4-edge-connected cubic graph with girth at least 6 having the PMH-property admits a perfect matching which can be extended to a Hamiltonian cycle in exactly one way. Finally, we also give two necessary and sufficient conditions for a graph admitting a 2-edge-cut to be: (i) 2FH, and (ii) PMH.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3