Abstract
We present uniformly available simple enumerative formulae for unrooted planar $n$-edge maps (counted up to orientation-preserving isomorphism) of numerous classes including arbitrary, loopless, non-separable, eulerian maps and plane trees. All the formulae conform to a certain pattern with respect to the terms of the sum over $t\mid n,\,t\! < \!n.$ Namely, these terms, which correspond to non-trivial automorphisms of the maps, prove to be of the form $\phi\left({n\over t}\right)\alpha\,r^t {k\,t\choose t}$, where $\phi(m)$ is the Euler function, $k$ and $r$ are integer constants and $\alpha$ is a constant or takes only two rational values. On the contrary, the main, "rooted" summand corresponding to $t=n$ contains an additional factor which is a rational function of $n$. Two simple new enumerative results are deduced for bicolored eulerian maps. A collateral aim is to briefly survey recent and old results of unrooted planar map enumeration.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献