Abstract
AbstractThe enumeration of combinatorial classes of the complex polynomial vector fields in$ \mathbb{C} $presented by K. Dias [Enumerating combinatorial classes of the complex polynomial vector fields in$ \mathbb{C} $.Ergod. Th. & Dynam. Sys. 33(2013), 416–440] is extended here to a closed form enumeration of combinatorial classes for degree$d$polynomial vector fields up to rotations of the$2(d- 1)\mathrm{th} $roots of unity. The main tool in the proof of this result is based on a general method of enumeration developed by V. A. Liskovets [Reductive enumeration under mutually orthogonal group actions.Acta Appl. Math. 52(1998), 91–120].
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference11 articles.
1. Automorphismen von polyedrischen Graphen
2. Enumerative formulae for unrooted planar maps: a pattern;Liskovets;Electron. J. Combin.,2004
3. A reductive technique for enumerating non-isomorphic planar maps
4. [DES] A. Douady , F. Estrada and P. Sentenac . Champs de vecteurs polynômiaux sur $ \mathbb{C} $ , unpublished manuscript.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献