Author:
Bender Edward A.,Daalhuis Adri B. Olde,Gao Zhicheng,Richmond L. Bruce,Wormald Nicholas
Abstract
We study the asymptotic behavior of the terms in sequences satisfying recurrences of the form $a_n = a_{n-1} + \sum_{k=d}^{n-d} f(n,k) a_k a_{n-k}$ where, very roughly speaking, $f(n,k)$ behaves like a product of reciprocals of binomial coefficients. Some examples of such sequences from map enumerations, Airy constants, and Painlevé I equations are discussed in detail.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献