Abstract
ZusammenfassungMachine Learning ist ein Forschungsfeld mit großen Potenzialen und weitreichenden Anwendungspotenzialen. Big Data kann dabei als Enabler angesehen werden, da große und qualitativ hochwertige Daten stets die Grundlage für erfolgreiche Machine Learning-Algorithmen und -Modelle darstellen. Aktuell gibt es noch keinen voll etablierten Standardprozess für den Machine Learning-Life Cycle, wie es im Data Mining mit dem CRISP-DM beispielsweise der Fall ist, was zur Folge hat, dass gerade die Operationalisierung von Machine Learning-Modellen Unternehmen vor große Herausforderungen stellen kann. In diesem Beitrag werden anhand der Sicht auf die Beschaffenheit der Daten, die verschiedenen Rollen in Machine Learning-Teams und den Lebenszyklus von Machine Learning-Modellen Implikationen für das Datenmanagement in Unternehmen herausgearbeitet.
Funder
Carl von Ossietzky Universität Oldenburg
Publisher
Springer Fachmedien Wiesbaden GmbH
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献