Abstract
В работе исследована краевая задача со смещением для гиперболического уравнения третьего порядка, которая содержит производную в граничных условиях. Доказана теорема единственности и существования регулярного решения исследуемой задачи.
The paper investigates a boundary value problem with a shift for a third-order hyperbolic equation, which contains a derivative in the boundary conditions. A uniqueness and existence theorem for a regular solution of the problem under study is proved.
Publisher
Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences
Reference16 articles.
1. Hallaire M. L’eau et la productions vegetable // Institut National de la Recherche Agronomique, 1964. Т. 9.
2. Showalter R. E., Ting T. W. Pseudoparabolic partial differential equations // SIAM J. Math. Anal., 1970. Т. 1, №1, С. 1–26.
3. Нахушев А. М. Уравнения математической биологии. М.: Высш. шк., 1995. 301 с. [Nakhushev A. M. Uravneniya matematicheskoj biologii. M.: Vyssh. shk., 1995. 301 pp. (In Russian)]
4. Coleman B. D., Duffin R. J., Mizel V. J. Instability, Uniqueness, and Nonexistence Theorems for the Equation on a Strip //Arch. Rat. Mech. Anal., 1965. vol. 19, pp. 100–116.
5. Yangarber V.A. The mixed problem for a modified moisture-transfer equation // Journal of Applied Mechanics and Technical Physics., 1967. vol. 8, no. 1, pp. 62–64.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献