A Study on Prediction of Friction Characteristics from Speckle Patterns of Friction Surfaces Using Machine Learning
Author:
Affiliation:
1. Department of Mechanical Engineering, Graduate School of Tokyo University of Science
2. Department of Mechanical Engineering, Tokyo University of Science
Publisher
Japanese Society of Tribologists
Link
https://www.jstage.jst.go.jp/article/trol/19/4/19_334/_pdf
Reference21 articles.
1. [1] Gonçalves CA, Cunha RC, Lago DF. Maintenance of a reducer by vibration and wear particles analysis. J Qual Maint Eng. 2006;12(2): 118-132. doi:10.1108/13552510610667156
2. [2] Seong Y, Lee D, Yeom J, Park J. The feature extraction through wavelet coefficients of metal friction noise for adhesive and abrasive wear monitoring. Appl Sci. 2021;11(9): 3755. doi:10.3390/app11093755
3. [3] Rmili W, Ouahabi A, Serra R, Leroy R. An automatic system based on vibratory analysis for cutting tool wear monitoring. Measurement. 2016;77: 117-123. doi:10.1016/j.measurement.2015.09.010
4. [4] Murashima M, Yamada T, Umehara N, Tokoroyama T, Lee WY. Novel friction stabilization technology for surface damage conditions using machine learning. Tribol Int. 2023;180: 108280. doi:10.1016/j.triboint.2023.108280
5. [5] Peng Y, Cai J, Wu T, Cao G, Kwok N, Peng Z. WP-DRnet: A novel wear particle detection and recognition network for automatic ferrograph image analysis. Tribol Int. 2020;151: 106379. doi:10.1016/j.triboint.2020.106379
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3