Abstract
Friction between metals is a physical phenomenon that occurs in manufacturing machine tools. This annoying noise implies unnecessary metal contact and deterioration of a mechanical system. In this study, for the monitoring of the friction between two metal surfaces, the acoustic signature was extracted by applying the wavelet transform method to the noise measured from the change in contact force for each state of adhesive and abrasive wear. Experiments were conducted with a constant relative speed between the contacting metal surfaces. For the adhesive wear, the peak signal-to-noise ratio (PSNR) calculated by the wavelet transformation increases with the increasing contact pressure. Opposite trends were observed for the abrasive wear. The proposed index formed a group within a specific range. This ratio exhibited a strong relationship with the wear characteristics and the surface condition. From the proposed index calculated by the wavelet coefficients, the continuous monitoring of the wear influence on the failure of the machine movement operations is achieved by the sound radiation from the contacting surfaces.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献