The Feature Extraction through Wavelet Coefficients of Metal Friction Noise for Adhesive and Abrasive Wear Monitoring

Author:

Seong Yeonuk,Lee Donghyeon,Yeom Jihye,Park JunhongORCID

Abstract

Friction between metals is a physical phenomenon that occurs in manufacturing machine tools. This annoying noise implies unnecessary metal contact and deterioration of a mechanical system. In this study, for the monitoring of the friction between two metal surfaces, the acoustic signature was extracted by applying the wavelet transform method to the noise measured from the change in contact force for each state of adhesive and abrasive wear. Experiments were conducted with a constant relative speed between the contacting metal surfaces. For the adhesive wear, the peak signal-to-noise ratio (PSNR) calculated by the wavelet transformation increases with the increasing contact pressure. Opposite trends were observed for the abrasive wear. The proposed index formed a group within a specific range. This ratio exhibited a strong relationship with the wear characteristics and the surface condition. From the proposed index calculated by the wavelet coefficients, the continuous monitoring of the wear influence on the failure of the machine movement operations is achieved by the sound radiation from the contacting surfaces.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3