Comparison of the impact of R449-A and R290 on refrigerated display cabinets using life-cycle climate performance method

Author:

Demirpolat Havva1ORCID,Erten SüleymanORCID,Ataş Şafak2ORCID,Aktaş Mustafa3ORCID,Özkaymak Mehmet4ORCID

Affiliation:

1. SELCUK UNIVERSITY

2. KARABUK UNIVERSITY

3. GAZİ ÜNİVERSİTESİ

4. KARABÜK ÜNİVERSİTESİ

Abstract

Due to the high energy consumption of refrigerated display cabinets used in supermarkets, a life cycle cooling performance analysis to increase energy efficiency and reduce environmental impacts is the main subject of this study. It also emphasizes the need for cabinets that consume less energy and provide environmentally friendly working conditions. The Life Cycle Climate Performance (LCCP) of the two refrigerants R290 and R449-A was evaluated using measured data to compare the environmental impact of the refrigerants over the entire fluid and equipment life cycle, including energy consumption. Both vapor-compressed cooling cycles were thermodynamically modeled with the parameters taken from the experiments and the efficiency of system was calculated by using the EES software. The results show that the cabinet using R290 has lower compressor power utilization. The COP of the R290 system increased by 13% compared to the R449A system. The total daily energy consumption was also significantly lower for the R290 system. The energy efficiency index provides a standardized metric that can be used to compare the performance of different cooling systems. In this study, the energy efficiency index value was 17.3 points lower for the R290 system, indicating higher energy efficiency. The energy classes are “E” for the R449-A system and “C” for the R290 system, with the R290 system two classes higher in terms of energy class labeling. The EEI value of the system with R290 refrigerant has been reduced by 33% in comparison with the system with R449A refrigerant. The system using R290 refrigerant achieved a 33% reduction in energy consumption compared to the system using R449A refrigerant. The study also assessed the life cycle climate performance of the two systems. It was found that the R449-A system emits 19032.45 kg CO2e more over its lifetime compared to the R290 system. This was attributed to the relatively high global warming potential and energy consumption of R449-A refrigerant. However, when considering safety (flammability), it was concluded that R-449A has a lower environmental impact than R-290.

Publisher

European Mechanical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3