Abstract
Introduction. Existing mixing devices operate at a constant angular velocity of the working body. During this process, there are zones in which there may be no movement of material, which leads to a decrease in the quality of the finished product. When the working body moves with a variable angular rate, the inertia forces, when changing its sign, contribute to the creation of conditions under which the mixture will lose contact with the blade and move to new levels of movement, and this helps to improve the quality and intensity of the mixing process. The purpose of the work is to improve the quality of the processed mixture on horizontal blade (kneading) machine. Methods. Theoretical studies are carried out using the basic provisions of the theory of machines and mechanisms, structural and parametric synthesis, kinematic analysis, mathematical and computer simulation. Results and discussion. In accordance with the proposed method, the synthesis of the cam-rocker mechanism is carried out, which made it possible to select the main dimensions for the cam mechanism: the minimum radius and center distance. For the synthesis of the rocker group, the parameters of the synthesized cam mechanism are used and, using the main parameters for the rocker group (the size of the input link, the angle of the second arm initial position and rocker centre line, equal to 90°). The rocker arm span angle is obtained equal to 103°. As a result of the kinematic calculation, it is found that the dwell time of the working shafts is within 80°. The quality of the mixture can be assessed by the angle of the stagnation zone, which is formed during the movement of granular material. Under static conditions, it is equal to 0.846°, and at variable angular rate — 0.550°. It is theoretically confirmed that inertial forces that change sign four times in one cycle will provide shaking and rebound of the mixed mass from the blades, which, in turn, will significantly improve the quality of the mixture.
Publisher
Novosibirsk State Technical University
Subject
Metals and Alloys,Mechanics of Materials,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献