Damage detection in concrete structures with impedance data and machine learning

Author:

Anjum Asraar,Hrairi Meftah,Aabid AbdulORCID,Yatim Norfazrina,Ali Maisarah

Abstract

This study aims to evaluate the effectiveness of machine learning (ML) models in predicting concrete damage using electromechanical impedance (EMI) data. From numerous experimental evidence, the damaged mortar sample with surface-mounted piezoelectric (PZT) material connected to the EMI response was assessed. This work involved the different ML models to identify the accurate model for concrete damage detection using EMI data. Each model has been evaluated with evaluation metrics with the prediction/true class and each class is classified into three levels for testing and trained data. Experimental findings indicate that as damage to the structure increases, the responsiveness of PZT decreases. Therefore, examined the ability of ML models trained on existing experimental data to predict concrete damage using the EMI data. The current work successfully identified the approximately close ML models for predicting damage detection in mortar samples. The proposed ML models not only streamline the identification of key input parameters with models but also offer cost-saving benefits by reducing the need for multiple trials in experiments. Lastly, the results demonstrate the capability of the model to produce precise predictions.

Publisher

Polish Academy of Sciences Chancellery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3