Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control

Author:

Miller Christopher Paul KingsleyORCID,Muller Jennifer,Noecker Angela M.,Matias Caio,Alizadeh Mahdi,McIntyre CameronORCID,Wu Chengyuan

Abstract

Introduction: Accurate and precise delineation of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) is critical for the clinical treatment and research of Parkinson’s disease (PD). Automated segmentation is a developing technology which addresses limitations of visualizing deep nuclei on MR imaging and standardizing their definition in research applications. We sought to compare manual segmentation with three workflows for template-to-patient nonlinear registration providing atlas-based automatic segmentation of deep nuclei. Methods: Bilateral GPi, STN, and red nucleus (RN) were segmented for 20 PD and 20 healthy control (HC) subjects using 3T MRIs acquired for clinical purposes. The automated workflows used were an option available in clinical practice and two common research protocols. Quality control (QC) was performed on registered templates via visual inspection of readily discernible brain structures. Manual segmentation using T1, proton density, and T2 sequences was used as “ground truth” data for comparison. Dice similarity coefficient (DSC) was used to assess agreement between segmented nuclei. Further analysis was done to compare the influences of disease state and QC classifications on DSC. Results: Automated segmentation workflows (CIT-S, CRV-AB, and DIST-S) had the highest DSC for the RN and lowest for the STN. Manual segmentations outperformed automated segmentation for all workflows and nuclei; however, for 3/9 workflows (CIT-S STN, CRV-AB STN, and CRV-AB GPi) the differences were not statically significant. HC and PD only showed significant differences in 1/9 comparisons (DIST-S GPi). QC classification only demonstrated significantly higher DSC in 2/9 comparisons (CRV-AB RN and GPi). Conclusion: Manual segmentations generally performed better than automated segmentations. Disease state does not appear to have a significant effect on the quality of automated segmentations via nonlinear template-to-patient registration. Notably, visual inspection of template registration is a poor indicator of the accuracy of deep nuclei segmentation. As automatic segmentation methods continue to evolve, efficient and reliable QC methods will be necessary to support safe and effective integration into clinical workflows.

Publisher

S. Karger AG

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3