Anti-Erosive Effect of Solutions Containing Sodium Fluoride, Stannous Chloride, and Selected Film-Forming Polymers

Author:

Bezerra Sávio J.C.,João-Souza Samira H.,Aoki Idalina V.,Borges Alessandra B.,Hara Anderson T.,Scaramucci Taís

Abstract

The aim of this study was to evaluate the anti-erosive effect of solutions containing sodium fluoride (F: 225 ppm F–), stannous chloride (Sn: 800 ppm Sn2+), and some film-forming polymers (Gantrez: Poly [methylvinylether-alt-maleic anhydride]; PGA: propylene glycol alginate; Plasdone: poly[vinylpyrrolidone]; and CMC: carboxymethylcellulose). Solutions were tested in an erosion-remineralization cycling model, using enamel and dentin specimens (n = 10, for each substrate). Distilled water was the negative control. Cycling consisted of 120 min immersion in human saliva, 5 min in 0.3% citric acid solution, and 120 min of exposure to human saliva, 4×/day, for 5 days. Treatment with solutions (pH = 4.5) was carried out 2×/day, for 2 min. Surface loss (SL) was evaluated with optical profilometry. Zeta potential of hydroxyapatite crystals was determined after treatment with the solutions. Data were statistically analyzed (α = 0.05). For enamel, all polymers showed significantly lower SL (in µm) than the control (11.09 ± 0.94), except PGA (10.15 ± 1.25). PGA significantly improved the protective effect of F (4.24 ± 0.97 vs. 5.64 ± 1.60, respectively). None of the polymers increased the protection of F+Sn (5.13 ± 0.78). For dentin, only Gantrez (11.40 ± 0.97) significantly reduced SL when compared with the negative control (12.76 ± 0.75). No polymer was able to enhance the effect of F (6.28 ± 1.90) or F+Sn (7.21 ± 1.13). All fluoridated solutions demonstrated significantly lower SL values than the control for both substrates. Treatment of hydroxyapatite nanoparticles with all solutions resulted in more negative zeta potentials than those of the control, except Plasdone, PGA, and F+Sn+PGA, the latter two presenting the opposite effect. In conclusion, Gantrez, Plasdone, and CMC exhibited an anti-erosive effect on enamel. PGA increased the protection of F. For dentin, only Gantrez reduced erosion.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3