Film-Forming Polymers for Inhibition of Hydroxyapatite Dissolution: A Screening Study

Author:

Sakae Letícia Oba,Prado Taiana Paola,Bezerra Sávio José Cardoso,Niemeyer Samira Helena,Borges Alessandra Buhler,Carvalho Thiago Saads,Scaramucci Tais

Abstract

The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F−), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F− and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups. HA crystals were pretreated with human saliva for 1 min to allow pellicle formation, then immersed in the experimental solutions (1 min), and exposed to saliva for another 28 min. Subsequently, they were added to a 0.3% citric acid solution (pH = 3.8), connected to a pH-stat system that added aliquots of 28 μL 0.1 N HCl for a total reaction time of 5 min. Data were analyzed with one-way ANOVA and Tukey’s tests (α = 0.05). For PA alone, the concentrations of 0.1% (native pH), 0.06%, and 0.08% (both pH adjusted) showed significantly lower HA dissolution than the negative control. PA concentrations of 0.1% and 0.08%, of both pH values, improved the effect of F against HA dissolution to a near-identical value as Sn/F. All solutions containing chitosan and LPP significantly reduced HA dissolution in comparison with the control. For chitosan, the concentration of 0.5% (in both pH values) improved the effect of F. LPP at 0.5% (native pH) and all associations of LPP with F outperformed the effect of F. Some PVM/MA solutions significantly reduced HA dissolution but PVM/MA could not improve the protection of F. PGA was incapable of reducing HA dissolution or improving F effect. It was concluded that chitosan, LPP, and some PA and PVM/MA solutions used alone were capable of reducing HA dissolution. Only PA, chitosan, and LPP were able to enhance fluoride protection, but for PA and chitosan, this was influenced by the polymer concentration.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3