Augmented Reality with HoloLens® in Parotid Tumor Surgery: A Prospective Feasibility Study

Author:

Scherl Claudia,Stratemeier Johanna,Rotter Nicole,Hesser Jürgen,Schönberg Stefan O.,Servais Jérôme J.,Männle David,Lammert Anne

Abstract

<b><i>Introduction:</i></b> Augmented reality can improve planning and execution of surgical procedures. Head-mounted devices such as the HoloLens® (Microsoft, Redmond, WA, USA) are particularly suitable to achieve these aims because they are controlled by hand gestures and enable contactless handling in a sterile environment. <b><i>Objectives:</i></b> So far, these systems have not yet found their way into the operating room for surgery of the parotid gland. This study explored the feasibility and accuracy of augmented reality-assisted parotid surgery. <b><i>Methods:</i></b> 2D MRI holographic images were created, and 3D holograms were reconstructed from MRI DICOM files and made visible via the HoloLens. 2D MRI slices were scrolled through, 3D images were rotated, and 3D structures were shown and hidden only using hand gestures. The 3D model and the patient were aligned manually. <b><i>Results:</i></b> The use of augmented reality with the HoloLens in parotic surgery was feasible. Gestures were recognized correctly. Mean accuracy of superimposition of the holographic model and patient’s anatomy was 1.3 cm. Highly significant differences were seen in position error of registration between central and peripheral structures (<i>p</i> = 0.0059), with a least deviation of 10.9 mm (centrally) and highest deviation for the peripheral parts (19.6-mm deviation). <b><i>Conclusion:</i></b> This pilot study offers a first proof of concept of the clinical feasibility of the HoloLens for parotid tumor surgery. Workflow is not affected, but additional information is provided. The surgical performance could become safer through the navigation-like application of reality-fused 3D holograms, and it improves ergonomics without compromising sterility. Superimposition of the 3D holograms with the surgical field was possible, but further invention is necessary to improve the accuracy.

Publisher

S. Karger AG

Subject

Otorhinolaryngology

Reference22 articles.

1. Li Z, Butler E, Li K, Lu A, Ji S, Zhang S. Large-scale exploration of neuronal morphologies using deep learning and augmented reality. Neuroinformatics. 2018 Oct;16(3–4):339–49.

2. Bong JH, Song HJ, Oh Y, Park N, Kim H, Park S. Endoscopic navigation system with extended field of view using augmented reality technology. Int J Med Robot. 2018 Apr;14(2).

3. Yoon JW, Chen RE, Kim EJ, Akinduro OO, Kerezoudis P, Han PK, et al. Augmented reality for the surgeon: systematic review. Int J Med Robot. 2018 Aug;14(4):e1914.

4. Gao Y, Lin L, Chai G, Xie L. A feasibility study of a new method to enhance the augmented reality navigation effect in mandibular angle split osteotomy. J Craniomaxillofac Surg. 2019 Aug;47(8):1242–8.

5. Rose AS, Kim H, Fuchs H, Frahm JM. Development of augmented-reality applications in otolaryngology-head and neck surgery. Laryngoscope. 2019 Oct;129(Suppl 3):S1–S11.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3