FoxP1 Protein Shows Differential Layer Expression in the Parahippocampal Domain among Bird Species

Author:

Garcia-Calero Elena,Martinez Salvador

Abstract

Different bird orders show diversity in neural capabilities supported by variations in brain morphology. The parahippocampal domain in the medial pallium, together with the hippocampus proper, plays an important role in memory skills. In the present work, we analyze the expression pattern of the FoxP1 protein in the parahippocampal area of four different bird species: the nonvocal learner birds quail and chicken (Galliformes) and two vocal learner birds, i.e. the zebra finch (Passeriformes) and the budgerigar (Psittaciformes), at different developmental and adult stages. We also analyze the expression of the calbindin protein in quails and zebra finches. We observed differences in the FoxP1 parahippocampal layer among bird species. In quails, chickens, and budgerigar, FoxP1 cells were located in the outer layers of the lateral and caudolateral parahippocampal sectors. In contrast, FoxP1 immunoreactive cells appeared in the inner layer of the same sectors in the zebra finch parahippocampal domain. These differences suggest two possibilities: either the FoxP1-positive cells described in quails, chickens, and budgerigars are a different population than the one described in the zebra finch, or there are changes in the pattern of radial migration in the parahippocampal area among birds. In the present study, we show that FoxP1 expression is more similar between quails, chickens, and budgerigars than between budgerigars and zebra finches in the parahippocampal area. This result contrasts with previous data in other telencephalic structures, like the calbindin-positive projection neurons described in the striatum of budgerigars and zebra finches but not in quails and chickens. All of these data point to diversity in the evolution of different morphological characters and, therefore, a mosaic model for telencephalic evolution in birds.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation;Brain, Behavior and Evolution;2017

2. Brain evolution and development: adaptation, allometry and constraint;Proceedings of the Royal Society B: Biological Sciences;2016-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3