Brain evolution and development: adaptation, allometry and constraint

Author:

Montgomery Stephen H.1ORCID,Mundy Nicholas I.2ORCID,Barton Robert A.3

Affiliation:

1. Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK

2. Department of Zoology, University of Cambridge, St Andrews Street, Cambridge CB2 3EJ, UK

3. Evolutionary Anthropology Research Group, Durham University, Dawson Building, South Road, Durham DH1 3LE, UK

Abstract

Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.

Funder

Leverhulme Trust

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference107 articles.

1. Interpretation of the Coefficient in the Allometric Equation

2. ALLOMETRY AND SIZE IN ONTOGENY AND PHYLOGENY

3. Sur le rapport de l’ encephale avec la grandeur du corps chez les Mammiferes;Dubois E;Bull. Soc. Anthr. Paris,1897

4. Does Bigger Mean Better? Evolutionary Determinants of Brain Size and Structure

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3